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Abstract

Cotton fibres are unicellular seed trichomes. Our pre-

vious study suggested that the cotton R2R3 MYB

transcript factor GaMYB2 is a functional homologue of

the Arabidopsis trichome regulator GLABRA1 (GL1).

Here, the GaMYB2 promoter activity is reported in

cotton (Gossypium hirsutum), tobacco (Nicotiana taba-

cum), and Arabidopsis plants. A 2062 bp promoter of

GaMYB2 was isolated from G. arboreum, and fused to

a b-glucuronidase (GUS) reporter gene. In cotton, the

GaMYB2 promoter exhibited activities in developing

fibre cells and trichomes of other aerial organs, in-

cluding leaves, stems and bracts. In Arabidopsis the

promoter was specific to trichomes. Different from

Arabidopsis and cotton that have unicellular non-

glandular simple trichomes, tobacco plants contain

more than one type of trichome, including multicellular

simple and glandular secreting trichomes (GSTs).

Interestingly, in tobacco plants the GaMYB2 promoter

directed GUS expression exclusively in glandular cells

of GSTs. A series of 5#-deletions revealed that a 360 bp

fragment upstream to the translation initiation codon

was sufficient to drive gene expression. A putative cis-

element of the T/G-box was located at -233 to -214;

a yeast one-hybrid assay showed that Arabidopsis

bHLH protein GLABRA3 (GL3), also a trichome regula-

tor, and GhDEL65, a GL3-like cotton protein, had high

binding activities to the T/G-box motif. Overexpression

of GL3 or GhDEL65 enhanced the GaMYB2 promoter

activity in transgenic Arabidopsis plants. A compari-

son of GaMYB2 promoter specificities in trichomes of

different plant species with different types of tri-

chomes provides a tool for further dissection of plant

trichome structure and development.
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trichome.

Introduction

Trichomes are specialized epidermal appendages found in
the surface of aerial organs of most land plants. There are
several types of trichomes: unicellular or multicellular,
branched or unbranched, and glandular or non-glandular.
Trichomes contribute to many aspects of plant adaptation
to biotic and abiotic stresses, such as to fence off insect
herbivores, regulate surface temperature, decrease water
loss through transpiration, increase tolerance to freezing,
assist seed dispersal, and protect plant tissues from UV
light (Eisner et al., 1998; Werker, 2000; Wagner et al.,
2004). Glandular secreting trichomes (GSTs) often secrete
plant secondary metabolites to constitute natural product-
based resistance to herbivores and pathogens (Werker,
2000; Ranger and Hower, 2001; Wagner et al., 2004;
Medeiros and Tingey, 2006). Many trichome-produced or
trichome-stored compounds are of commercial value, such
as those used in spice principal and pharmaceuticals
production (Krings and Berger, 1998; McCaskill and
Croteau, 1999; Wagner et al., 2004). For example,
artemisinin, a sesquiterpene lactone that is widely used
for the treatment of malaria, accumulates in glandular
trichomes of Artemisia annua (Lommen et al., 2006; C
Liu et al., 2006).
Different plant species may have different types of

trichomes, and one plant may bear more than one type of
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trichomes. The annual weed Arabidopsis thaliana produ-
ces unicellular non-glandular trichomes, which are either
branched or unbranched (Szymanski et al., 2000). Tobacco
plants usually contain multicellular trichomes, including
tall glandular secreting trichomes (GSTs) and simple
glandless trichomes (Wagner et al., 2004). Recently, small
procumbent glandular secreting trichomes, which accumu-
late antimicrobial proteins, were found in the aerial
surfaces of tobacco (Shepherd et al., 2005), and sunflower
(Kroumova et al., 2007). Cotton fibres are single-celled
and extensively elongated seed trichomes, which provide
the most important natural fibre for the textile industry
(Kim and Triplett, 2001).
Cotton fibre development is a complicated and ordered

process under the regulation of a vast number of genes,
many of which are up-regulated or highly expressed in
developing fibre cells (CH Li et al., 2002; Ruan et al.,
2003; S Wang et al., 2004; Li et al., 2005; Luo et al.,
2007). In recent years, comprehensive analyses of gene
expression profiles have provided valuable clues to
understanding cotton fibre formation (Arpat et al., 2004;
Yang et al., 2006; Shi et al., 2006; Gou et al., 2007; Lee
et al., 2007). To explore the molecular mechanisms
regulating cotton fibre development, promoters of several
cotton fibre genes have been identified. E6 was the first of
such genes to be reported, and the E6 promoter has been
used for engineering cotton fibre quality (John and Keller,
1996). GhRDL1, a gene highly expressed in cotton fibre
cells at the elongation stage, encodes a BURP domain-
containing protein (CH Li et al., 2002), and the GaRDL1
promoter exhibited a trichome-specific activity in trans-
genic Arabidopsis plants (S Wang et al., 2004). GhTUB1
transcripts preferentially accumulate at high levels in fibre,
accordingly, the pGhTUB1::GUS fusion gene was
expressed at a high level in fibre but at much lower levels
in other tissues (XB Li et al., 2002). Promoters of three
cotton lipid transfer protein genes, LTP3, LTP6, and
FSltp4, were able to direct GUS gene expression in leaf
and stem GSTs in transgenic tobacco plants (Hsu et al.,
1999; Liu et al., 2000; Delaney et al., 2007), however,
they did not exhibit a clear tissue-specificity. For example,
in pFSltp4::GUS transgenic tobacco plants, strong GUS
activity could be detected in all types of trichomes; in
addition, GUS expression was also visible at the leaf
margin, vascular tissue, ovules, and root tips (Delaney
et al., 2007).
Previously it was reported that the cotton R2R3 MYB

transcription factor GaMYB2 is a functional homologue
of Arabidopsis GLABRA1 (GL1), a key regulator of
Arabidopsis trichome formation. Northern blot and in situ
RNA hybridization showed that GaMYB2 is expressed in
cotton fibre cells at the early developmental stages
(S Wang et al., 2004). In order to dissect the regulation
of GaMYB2 gene expression further, the GaMYB2 pro-
moter was isolated and its activity in cotton, Arabidopsis,

and tobacco plants was analysed. It is shown that, while
highly active in developing cotton fibre cells, this pro-
moter is trichome-specific in Arabidopsis and GST head-
specific in tobacco. It is further shown that a cis-element
of the T/G-box, which can be recognized by bHLH
transcription factors, such as Arabidopsis GL3 and cotton
GhDEL65, contributes to the promoter activity in trans-
genic Arabidopsis.

Materials and methods

Plant materials and growth

Plants of cotton (Gossypium hirsutum cv. R15 and G. arboreum cv.
Qingyangxiaozi) and tobacco (Nicotiana tabacum) were grown in
a greenhouse at 2862 �C with a natural photoperiod. Transgenic
cotton and tobacco plants were at first cultured under 26 �C in
a tissue culture room. Plants of Arabidopsis thaliana (Columbia-0,
Col-0 ecotype) were grown indoors at 22 �C under a 16 h light
period.

Genome walking

Genomic DNA was isolated from G. arboreum leaf tissue as
described (XB Li et al., 2002), and genome walking was performed
to isolate the GaMYB2 upstream fragment according to the Genome
Walker kit (Clontech, Palo Alto, CA). The DNA was completely
digested with selected restriction enzymes, and ligated to the
corresponding adaptors to generate several DNA fragment libraries.
The corresponding library was subjected to a first round of PCR
amplification with the outer adaptor primer (AP1) and an outer
gene-specific primer (GSP1), while the inner adaptor primer (AP2)
and inner gene-specific primer (GSP2) were used for the second
round of PCR. After two rounds of PCR, DNA fragments amplified
were cloned into the pMD18-T vector (TakaRa, Japan) for
sequencing.
All the primers used in this investigation are shown in

Supplementary Table S1 at JXB online.

Vector construction

A 2062 bp promoter fragment of GaMYB2 was re-amplified with
a pair of primers carrying an XbaI and a BamHI restriction site,
respectively. Shorter promoter fragments with different lengths of
5#-terminal deletions were similarly amplified with each primer
pairs. After digestion, these DNA fragments were inserted into
pBI101.1 vector (Clontech), upstream of GUS gene coding region,
resulting in a series of pGaMYB2::GUS binary vectors, namely
P-2000 (-2062/-1, 2062 bp), P-1000 (–1000/-1, 1000 bp), P-750
(-750/-1, 750 bp), P-440 (-440/-1, 440 bp), P-360 (-360/-1, 360 bp),
and P-220 (-220/-1, 220 bp). To construct the P-AB1 (-440/-1, the
20 bp fragment of -233 to -214 was deleted) and P-AB2 (-440/-1,
the 87 bp fragment of -317 to -231 deleted) vectors, a PCR-based
two-step DNA synthesis method was used as described (Wang and
Malcolm, 2002).
The 35S promoter and NOS terminator were inserted into the

SacI/EcoRI and HindIII/PstI sites of pCAMBIA1300, respectively,
forming a p1300–35S-NOS intermediate vector. The Arabidopsis
GLABRA3 (GL3) cDNA and the genomic sequence of GhDEL65
were amplified by PCR and were inserted into the BamHI/PstI site
of the p1300–35S-NOS, respectively, generating 35S::GL3 and
35S::GhDEL65 fusion gene constructs. The vectors were transferred
into Agrobacterium tumefaciens strain LBA4404 or GV3101 and
used for plant transformation.
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Plant transformation and GUS assay

Agrobacterium-mediated cotton transformation was performed as
described (XB Li et al., 2002). The hypocotyl segments were used
as explants for transformation. After the stages of callus induction,
proliferation, embryogenic callus induction, embryo differentiation,
and finally plantlet regeneration, the plantlets were transferred to
pots in greenhouse for further growth. For tobacco transformation,
a leaf disc transformation method (Horsch et al., 1985) was
employed. Transformants were selected on MS medium containing
100 mg l�1 of kanamycin and 500 mg l�1 of cefotaxime.
Transgenic Arabidopsis plants were generated by a floral dip
method (Clough and Bent, 1998), and screened on half-strength
MS agar medium containing 50 mg l�1 of kanamycin or
hygromycin. Histochemical localization and fluorometric quantifi-
cation of GUS activities were performed as described (Jefferson
et al., 1987).

RNA analysis

Total RNAs were isolated from plant materials using a Trizol
reagent (Invitrogen, Carlsbad, CA). For RT-PCR, the first strand
cDNA was prepared, followed by a standard PCR protocol: 95 �C
for 5 min, 27–34 cycles (according to the gene expression level) of
denaturation at 95 �C for 20 s and annealing/extension at 56 �C for
30 s.

Yeast one-hybrid assay

Yeast one-hybrid assay was performed using the MATCHMAKER
one-hybrid system (Clontech). The DNA fragment of four tandem
copies of T/G-box [43 T/G-box (CTGCCACGTTGACAA)] was
synthesized and inserted directly into the multiple cloning sites of
reporter plasmids of pLacZi and pHISi-1, respectively. These two
bait constructs were linearized and integrated into the genome of
yeast strain YM4271, the dual reporter strain was selected and
maintained on synthetic dextrose (SD)/-His/-Ura medium. For
construction of the pGAD-GL3 fusion, GL3 cDNA was ligated
with GAL4 activation domain in pGAD424 plasmid, and then was
introduced into yeast strain with dual reporter genes, with the blank
pGAD424 plasmid as control. Yeast transformants were tested on
SD/-Leu/-His/-Ura medium containing different concentrations of
3-amino-1,2,4-triazole (3-AT) and 80 mg l�1 of 5-bromo-4-chloro-
3-indolyl-b-D-galactopyranoside (X-Gal) and 13 BU salt.
b-galactosidase assay was conducted as described (PT3024–1,

Clontech). The ORF of GhDEL65, TT8, AtMYC2, and GL3 were
in-frame fused with the GAL4 activation domain of the one-hybrid
vector pGAD424, and then transferred into yeast cells containing
pLacZi-43T/G-box plasmids, respectively; the blank pGAD424
plasmid was used as control. The unit of b-Gal activity was
determined by the equation of U¼10003[OD420]/(time (in min)-
3volume (in ml)3[OD600]. For each transformation sample,
multiple independent yeast isolates were tested, each for three
times.

Results

Isolation and sequence analysis of GaMYB2 promoter

Based on the cDNA sequence of GaMYB2 (S Wang et al.,
2004), a 2062 bp promoter fragment upstream to the
coding region was isolated from G. arboreum by genome
walking (see Supplementary Table S2 at JXB online). The
A of translation initiation codon (ATG) of GaMYB2 gene
was defined as +1. A putative TATA box (-93 to -86) and

a CAAT box (-131 to -128), which serve as basal promoter
elements for the transcription of eukaryotic genes, were
found in the GaMYB2 promoter. Sequence analysis using
PLACE (http://dna.affrc.go.jp/PLACE) showed that a num-
ber of putative tissue-specific or stress-induced regulatory
motifs corresponding to known cis-elements of plant genes
were present, such as MYB recognition site, E-box, and T/
G box (see Supplementary Table S3 at JXB online),
implying that the GaMYB2 promoter may be under
a complex regulation.

GaMYB2 promoter has a high activity in cotton fibre

Our previous investigation showed that GaMYB2 was
preferentially expressed in fibre cells at the early de-
velopmental stages, and this R2R3 MYB gene was able to
rescue the glabrous phenotype of the Arabidopsis gl1
mutant (S Wang et al., 2004). These experimental data
suggest that GaMYB2 may play a role in controlling
cotton fibre development. To dissect the GaMYB2 gene
expression pattern further, its promoter activity was
examined in cotton plants. The chimeric gene of
P-2000::GUS, in which a b-glucuronidase (GUS) reporter
gene was placed behind the promoter, was transferred into
cotton (G. hirsutum) plants through Agrobacterium tume-
faciens-mediated transformation. Nine T0 transgenic lines
were generated, and histochemical staining of each line
exhibited a similar pattern of GUS expression. Intensive
GUS staining was observed in epidermis of young ovules,
such as the 0-DPA ovule from which the fibre initials
were emerging, and in developing fibre cells (Fig. 1A, B).
To a lesser extent, GUS staining was observed in
trichomes of other aerial organs, including leaves, stems,
and bracts (Fig. 1C–E). Weak GUS staining was also
detected in other tissues, such as roots, stamens, and
petals, without a clear tissue-specificity (data not shown).
Consistent with histochemical staining, the in vitro assay
of protein abstracts showed the highest specific activity of
GUS in cotton fibres, and a lower activity in the 0-DPA
ovule. In the 9-DPA ovule from which the fibres were
stripped, GUS specific activity was almost completely lost
(Fig. 1F). The differences in specific activities among the
organs investigated were probably a reflection of the
portions of trichome proteins present in each sample, and
in cotton plants the GaMYB2 promoter has a high activity
in developing fibre cells and epidermal trichomes.

GaMYB2 promoter displays trichome-specific activity
in Arabidopsis

To examine the expression pattern of GaMYB2 promoter
in different plant species, the P-2000::GUS gene was
introduced into Arabidopsis. Arabidopsis leaf trichomes
are mostly branched, but trichomes on stem and sepals
are often unbranched; both branched and unbranched
trichomes are unicellular (Szymanski et al., 2000).
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Histochemical assay of T1 P-2000::GUS plants showed
that, in rosette leaves, GUS staining was located exclu-
sively in trichomes (Fig. 2A, B). In stems, the GUS
activity was also restricted to trichomes (Fig. 2C). At the
flowering stage, GUS activity was again present in the
unbranched trichomes of the sepals (Fig. 2D). In 1-week-
old seedlings, GUS staining was observable in shoot
apical meristems (SAM) and at the margins of the
cotyledons, but not in roots (data not shown). Clearly, in
Arabidopsis, the promoter of this cotton MYB gene drives
GUS gene expression specifically in trichomes, regardless
of their branching status.

GaMYB2 promoter confers specificity to glandular
trichomes in tobacco

Distinguished from cotton fibres and Arabidopsis tri-
chomes that are unicellular, tobacco plants have multicel-
lular trichomes, including the non-glandular simple
trichomes and the GSTs (Wagner et al., 2004; Shepherd
et al., 2005). Most of the tobacco organs are covered with
GSTs that have a head of glandular secreting cells and
a long or short stalk, but on the base of the anther
filaments, trichomes are mainly non-glandular. In order

to test GaMYB2 promoter activities in the different
types of trichomes, transgenic tobacco plants carrying P-
2000::GUS were generated. GUS staining showed that in

Fig. 1. GUS expression pattern and activities in transgenic cotton (G. hirsutum) plants expressing P-2000::GUS. (A) 0-DPA ovule; (B) 9-DPA fibre
(top) and ovule (bottom); (C) leaf; (D) stem; (E) bract; (F) quantitative analysis of GUS specific activities in different organs.

Fig. 2. Histochemical staining of GUS expression pattern in
transgenic Arabidopsis plants expressing P-2000::GUS. (A) 3-week-old
seedling; (B) rosette leaf; (C) stem; (D) flowers showing trichomes on
sepal.

3536 Shangguan et al.



leaves, stems, and bracts, the fusion gene was expressed
specifically in the GSTs. Notably, while strong GUS
staining was visualized in the glandular head of GSTs, the
GUS activity was undetectable in stalk cells (Fig. 3A–C,
E). Occasionally faint staining appeared in the stalk cells
adjacent to the glandular head, which might be a result of
diffusion. No GUS staining was observed in multicellular
simple trichomes of the anther filament (Fig. 3D, F). In
1-week-old seedlings which were trichomeless, no GUS
staining was observed in the hypocotyl, cotyledon, and root
(data not shown). These data demonstrate that, in tobacco
plants, the GaMYB2 promoter drives gene expression only
in glandular secreting cells, and it has no activity in other
types of trichome cells.

Promoter deletion analysis

To find regulatory regions important for trichome-specific
activity of the GaMYB2 promoter, several DNA fragments
of different 5#-deletions were generated by PCR and fused
to the GUS gene (see Supplementary Table S4 at JXB
online). These expression cassettes were then introduced
into Arabidopsis and tobacco plants, respectively. Assay
of transgenic Arabidopsis plants revealed that a 360 bp
fragment proximal to the coding region was sufficient to
drive GUS expression in Arabidopsis trichomes, with
a similar expression pattern and intensity to that of P-2000
plants (Fig. 4A, B). Further deletion of the promoter

decreased the gene expression level, as only about 1/3 of
the P-220 plants showed weaker GUS staining under the
same staining conditions used for P-360 plants (Fig. 4C),
and the specific activity of GUS was decreased to about
30% of that of P-360 plants (Fig. 4E). The expression
pattern and the intensity of GUS staining were similar
among the five promoters ranging from P-2000 to P-360,
implicating that the 360 bp fragment of GaMYB2
contained all the key cis-elements conferring trichome-
specific activity.
Similar results were obtained with transgenic tobacco

plants. The 360 bp fragment directed GUS expression in
secreting head cells of GSTs (Fig. 5A, B), with a similar
level of specific activity in the leaf as that of P-2000 (data
not shown). In the transgenic plants of P-220, the GUS
signal became very weak (Fig. 5C).

Activation of transcription by bHLH protein through
binding to T/G-box

PLACE analysis revealed a T/G-box element (AACGTG)
present at -226 to -221, which attracted attention. The T/
G-motif has been shown to play an important regulatory
role in tomato defence genes of proteinase inhibitor II and
leucine aminopeptidase (LAP). JAMYC2 and JAMYC10,
both encoding the basic helix-loop-helix (bHLH) domain-
containing transcription factor, specifically recognize the
T/G-box motif in the promoter of these two genes and

Fig. 3. Histochemical staining of GUS expression pattern in transgenic tobacco plants expressing P-2000::GUS, GUS activity was detected in
glandular head cells of the multicellular glandular secreting trichome (GST). (A) GSTs on leaf; (B) GSTs on stem; (C) GSTs on flower bract; (D)
multicellular simple trichomes on the base of anther filament; (E) magnified view of a leaf GST; (F) magnified view of an anther filament simple
trichome. Bar ¼ 100 lm.

Trichome specificity of a cotton fibre promoter 3537

Supplementary Table S4


transactivate their expression (Boter et al., 2004). Similar
to these MYC proteins, GL3, a key regulator of
Arabidopsis trichome development, also contains a con-
served bHLH domain (Payne et al., 2000). A recent report
showed that GL3 is able to bind to the promoter sequence
and activate transcription of MYB transcription factor
genes, such as CPC and ETC1, which are negative
regulators of trichome development (Morohashi et al.,
2007). It was then asked if GL3 could activate the
GaMYB2 promoter.
First, a modified promoter, P-AB1, that lacked the T/G-

box was generated by removing a 20 bp fragment (-233 to
-214) from P-440. Arabidopsis plants harbouring P-
AB1::GUS exhibited a strong reduction of the GUS signal
in the trichome (Fig. 4D) and the specific activity of GUS
in leaf proteins was dramatically decreased (Fig. 4E). A
similar reduction of promoter activity was detected in P-
AB1 tobacco plants, in which the GUS staining in GSTs
was very faint (Fig. 5D). Another promoter, P-AB2, was
then made in which a 87 bp fragment (-317 to -231) was
removed from P-440, while the T/G box was intact.
Analysis of Arabidopsis plants revealed that deletion of
this 87 bp sequence resulted in only a marginal loss of
activity (Fig. 4E). These deletion results suggest that the
17 bp region between -230 and -214 plays an important
role in activating the GaMYB2 promoter, further support-
ing the assumption that the T/G-box present in this region
may serve as a cis-acting element conferring promoter
activity in trichomes.
The binding activity of GL3 to the T/G-box motif of

GaMYB2 promoter was then tested by the yeast one-

hybrid assay, using a 60 bp DNA fragment containing
43 T/G-box (four tandem repeats of the T/G-box
element and its flanking sequence). It was found that
only the yeast clones harbouring the pGAD-GL3 plasmid
grew on the medium used for the assay (Fig. 6A),
indicating that Arabidopsis bHLH protein GL3 is indeed

Fig. 4. Analysis of GaMYB2 promoter activities with different deletions, GUS activities in transgenic Arabidopsis plants were assayed. (A–D) GUS
staining of rosette leaves of P-2000 (A), P-360 (B), P-220 (C), and P-AB1 (D) plants; (E) quantitative analysis of GUS specific activities in rosette
leaves of Arabidopsis transformed with GUS gene driven by different versions of GaMYB2 promoters as indicated (see also Supplementary Table S4
at JXB online). Leaves of 3–4-week-old plants of ten different transgenic lines were used for GUS assay. **P <0.01 versus P-2000 plants.

Fig. 5. GUS staining of tobacco plants transformed with the GUS gene
driven by the GaMYB2 promoter with different deletions. (A–D) GSTs
on leaf of the P-2000 (A), P-360 (B), P-220 (C), and P-AB1 (D) plants.
All the plants assayed were at rooting stage.
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able to recognize and interact with the T/G-box motif,
and function as a transcriptional activator, at least in
yeast.
The Arabidopsis genome encodes more than 160 bHLH

transription factors, which act as important regulatory
components in diverse biological processes (Bailey et al.,
2003; Toledo-Ortiz et al., 2003). Among them TT8 shares

30% amino acid sequence identity with GL3, and it plays
a role in regulating the flavonoid pathway by forming
a ternary complex with TT2 (a MYB) and TTG1 (a WD-
repeat protein) (Baudry et al., 2004). Another bHLH
transcription factor of A. thaliana, AtMYC2, is 26%
identical to GL3 based on amino acid sequences.
AtMYC2 is an important regulator in the jasmonic acid

Fig. 6. Transcriptional activation of GaMYB2 promoter by bHLH protein. (A) DNA–protein interaction in a yeast one-hybrid system. pGAD-GL3
and pGAD424 plasmids were transformed into a yeast strain carrying dual report genes under the control of four-time tandem repeats of the T/G-box
element. The transformants were examined for growth in the presence of 3-AT and b-galactosidase (b-Gal) activity using X-Gal as substrate. Only
the yeast clones harbouring pGAD-GL3 grew on the -His-Ura-Leu synthetic dextrose (SD) base containing 20 mM 3-AT and also showed a high b-
Gal activity (blue staining), demonstrating binding activity of GL3 to the T/G-box. (B) Comparison of T/G-box binding activity of four bHLH
proteins. The DNA–protein interaction was determined by b-Gal activity measured through an ONPG assay. **P <0.01 and *P <0.05 versus
pGAD-GL3 binding activity. (C) RT-PCR analysis of expression of GL3 and GUS genes in 35S::GL3/ P-440::GUS Arabidopsis plants. Total RNA
was isolated from leaves of 4-week-old plants, Actin2 (At3g18780) was amplified as an internal control. (D) Enhanced activation of the GaMYB2
promoter by constitutive expression of GL3 and GhDEL65 in P-440 plants. Leaves of 4-week-old plants (eight transgenic lines) were used for the
GUS activity assay, the mean value of GUS specific activities of P-440 plants was set as 100% and used to define the relative GUS activity of
35S::GL3/ P-440::GUS and 35S::GhDEL65/P-440::GUS plants, respectively. **P <0.01 versus P-440 plants.
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(JA) and abscisic acid (ABA) signalling pathways (Abe
et al., 2003; Boter et al., 2004), and has been reported to
bind to the MYC-site (CACATG) in the Arabidopsis
RD22 gene promoter (Abe et al., 1997) and T/G-box
(AACGTG) motif in the tomato LAP promoter (Boter
et al., 2004). A search of the NCBI database for cotton
homologues of Arabidopsis GL3 retrieved a putative
bHLH protein, GhDEL65, which shares ;50% sequence
identity with GL3, and is more distantly related to TT8
and AtMYC2 with sequence identities of 35% and 20%,
respectively. To see if the GaMYB2 T/G-box motif was
specifically recognized by a certain type of bHLH protein,
the b-galactosidase activities of yeast cells expressing
each bHLH proteins was compared, respectively, in a yeast
one-hybrid system. It was found that while GL3 and
GhDEL65 were equally active in interacting with the cis-
elements, TT8 and AtMYC2 had significantly lower
activities (Fig. 6B).
Recognition of the T/G-box motif by GL3 and

GhDEL65 prompted the question whether both transcrip-
tion factors would activate the GaMYB2 promoter in
planta. The coding region of the two genes under the
control of the 35S promoter was introduced into T2 plants
of P-440, respectively. RT-PCR analysis of individual
35S::GL3 transformants showed that the GUS transcript
level was markedly increased in plants overexpressing
GL3 (Fig. 6C). In comparison with P-440 plants, GUS
activities were elevated by about 2.6-fold due to 35S::GL3
expression and about 3.1-fold due to 35S::GhDEL65
expression (Fig. 6D). The trichome specificity, however,
was not changed. Therefore, in transgenic Arabidopsis
plants, constitutive overexpression of GL3 or GhDEL65
strongly enhanced the GaMYB2 promoter. These results
suggest that cotton bHLH proteins homologous to GL3
may be involved in regulating GaMYB2 gene expression
during cotton fibre development.

Discussion

It has been shown that a promoter of a cotton fibre MYB
gene, GaMYB2, directs reporter gene expression specifi-
cally in trichomes of Arabidopsis and GST head cells of
tobacco. Plant GSTs produce and accumulate a rich
plethora of specific metabolites, particularly secondary
metabolites, and are considered ideal plant cell factories
for metabolic engineering (Verpoorte et al., 2000; Wagner
et al., 2004; J Liu et al., 2006). Promoters of several
cotton genes highly expressed in fibre cells have been
reported, and those of LTP3, LTP6, FSltp4, GhGlcAT1,
and GhRGP1 genes were examined using transgenic
tobacco plants. Although active in GSTs as well, they are
less tissue-specific (Hsu et al., 1999; Liu et al., 2000; Wu
et al., 2006, 2007; Delaney et al., 2007). The high
specificity of the GaMYB2 promoter makes it a valuable

tool not only for engineering cotton fibre traits but also for
modification of GST metabolism.
In tobacco, which has both simple and glandular

secreting trichomes, activity of the GaMYB2 promoter is
restricted to GST head cells. It is inactive in other types of
cells, including GST stalk cells and multicellular simple
trichomes. This intriguing pattern seems to suggest that
unicellular trichomes of cotton and Arabidopsis share with
tobacco GST head cells a conserved molecular machinery
in regulating the expression of a set of genes, but this
machinery is not operating in either GST stalk cells or
multicellular simple trichomes of tobacco. In Arabidopsis,
multimeric complexes of MYB-bHLH-WD40 play a key
role in regulating trichome patterning and development
(Payne et al., 2000; Ramsay and Glover, 2005; Serna and
Martin, 2006), as well as anthocyanin and flavonoid
biosynthesis (Hartmann et al., 2005; Koes et al., 2005).
Recently, the bHLH transcription factor GL3 was shown
to bind the promoter of GL2, ETC1, and CPC, a group
of genes involved in the development and patterning
of trichomes, and directly activate their expression
(Morohashi et al., 2007). Our results that overexpression
of GL3 or its cotton homologue GhDEL65 enhanced the
GaMYB2 promoter activity suggest that, in cotton, bHLH
transcription factor(s) are probably involved in up-regulating
expression of GaMYB2 and possibly other functionally
related R2R3 MYB genes.
The yeast one-hybrid assay showed that GL3 and

GhDEL65 have higher binding activities to the GaMYB2
T/G-box than AtMYC2 and TT8, suggesting that the
GaMYB2 promoter is prone to the recognition by GL3-
type bHLH transcription factors. TT8 is similar to GL3 in
working mechanisms, as both are recruited to the MYB-
bHLH -WD40 activation complex. While GL3 is a tri-
chome and non-root hair cell regulator, TT8 is involved in
regulating anthocyanin and flavonoid biosynthesis (Payne
et al., 2000; Zhang et al., 2003; Ramsay and Glover,
2005). The detectable binding activity of TT8 protein to
the T/G motif of the GaMYB2 promoter, although
comparatively low, provides a possibility that TT8
homologues in tobacco glandular trichomes, which func-
tion in secondary metabolisms, could participate in the
activation of the reporter gene expression specifically in
glandular cells.
Our previous analysis of the cotton GaRDL1 promoter

showed that the L1-box and MYBCORE are two cis-
elements conferring trichome specificity to this promoter.
Mutation of either element reduced the GaRDL1 promoter
activity in Arabidopsis trichomes. Furthermore, expres-
sion of MYB (GL1 or GaMYB2) and HOX (GL2 or
GaHOX3) transcription factors, responsible for binding
the MYBCORE and L1- box, respectively, induced
a strong ectopic expression of the reporter gene in non-
trichome cells (S Wang et al., 2004). The CYP71D16
promoter of tobacco was able to direct GUS gene
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expression in glandular cells of GSTs in transgenic
tobacco plants (Wang et al., 2002), and this promoter has
been used for engineering plant defence against aphid
infection (E Wang et al., 2004). As the promoter deletions
progressed, GUS activity decreased and the expression
pattern extended. Although still trichome-specific, GUS
staining was concentrated in the lowest gland cell and
stalk cells, and the MYB-like sequence (CAACAG)
between -56 and -51 was speculated be important for
trichome specificity (Wang et al., 2002). SaPIN2b,
a nightshade (Solanum americanum) proteinase inhibitor
II gene, containing six MYB-binding motifs and an
L1 box in its promoter region, was constitutively
expressed in GSTs; similar to the CYP71D promoter,
when SaPIN2b promoter deletion proceeded a small
portion of the trichomes showed a shift of GUS activity
to the stalk cell (J Liu et al., 2006). The Arabidopsis
OASA1 promoter was reported to direct gene expression
in GSTs and simple trichomes, and the MYB motifs
located in the promoter and the first intron region of this
gene may act as enhancer elements in trichome cells
(Gutierrez-Alcala et al., 2005). AtTSG1 promoter also
showed trichome-specific activity in Arabidopsis; deletion
analysis of this promoter indicated that the MYB-like
recognition site (AACCAAAC) was a putative element
for trichome specific expression of this gene (Ni et al.,
2008). In tobacco, the promoter of the T-phyllopanin
gene directed reporter gene expression specifically in
short procumbent trichomes, which could explain the
biosynthesis of T-phylloplanin proteins only in this
particular type of glandular trichome (Shepherd et al.,
2005). Despite these interesting findings and speculations,
cis-elements and the related transcription factors confer-
ring glandular trichome expression await further
identification.
Although the fragment of -233 to -214 containing a T/

G-box was important for the activity of the GaMYB2
promoter in trichome, removal of this cis-element de-
creased the promoter activity greatly, but did not change
the GUS staining pattern. Furthermore, ectopic expression
of GL3 or GhDEL65 under the control of the 35S
promoter resulted in enhanced, but not the ectopic
expression of the reporter gene. It is reasonable to assume
that this T/G-box serves as an enhancer, and other cis-
element(s) exist that confer trichome-specificity to the
GaMYB2 promoter. Identification of such cis-element(s)
should help to dissect the molecular mechanisms regulat-
ing cotton fibre and tobacco GST development.

Acknowledgements

This work is supported by The National High-tech Research
Program of China (2006AA10Z102, 2006AA10A109) and The
National Key Basic Research Program of China (2007CB108800).

References

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-
Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2
(MYB) function as transcriptional activators in abscisic acid
signaling. The Plant Cell 15, 63–78.

Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T,
Hosokawa D, Shinozaki K. 1997. Role of Arabidopsis MYC
and MYB homologs in drought- and abscisic acid-regulated gene
expression. The Plant Cell 9, 1859–1868.

Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D,
Main D, Wood T, Leslie A, Wing RA, Wilkins TA. 2004.
Functional genomics of cell elongation in developing cotton
fibres. Plant Molecular Biology 54, 911–929.

Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Hug E,
Heim MA, Jakoby M, Werber M, Weisshaar B. 2003. Update
on the basic helix–loop–helix transcription factor gene family in
Arabidopsis thaliana. The Plant Cell 15, 2497–2502.

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B,
Lepiniec L. 2004. TT2, TT8, and TTG1 synergistically specify
the expression of BANYULS and proanthocyanidin biosynthesis in
Arabidopsis thaliana. The Plant Journal 39, 366–380.

Boter M, Ruı́z-Rivero O, Abdeen A, Prat S. 2004. Conserved
MYC transcription factors play a key role in jasmonate signaling
both in tomato and Arabidopsis. Genes and Development 18,
1577–1591.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana.
The Plant Journal 16, 735–743.

Delaney SK, Orford SJ, Martin-Harris M, Timmis JN. 2007.
The fibre specificity of the cotton FSltp4 gene promoter is regulated
by an AT-rich promoter region and the AT-hook transcription
factor GhAT1. Plant and Cell Physiology 48, 1426–1437.

Eisner T, Eisner M, Hoebeke ER. 1998. When defence backfires:
detrimental effect of a plant’s protective trichomes on an insect
beneficial to the plant. Proceeding of the National Academy of
Sciences. USA 95, 4410–4414.

Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY. 2007. Gene
expression and metabolite profiles of cotton fibre during cell
elongation and secondary cell wall synthesis. Cell Research 17,
422–434.
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